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A combination of the semiclassical perturbation (SCP) approximation and a 
kinetic coupling model gives rise to simple analytic formulae for the descrip- 
tion of  local mode overtone absorption spectra and the associated 
intramolecular vibrational relaxation in polyatomic molecules. Application 
to the CH(CD)  stretch local mode overtones of  C6H 6 (C6D6) gives results 
which are in reasonable agreement with experimental observations. The SCP- 
kinetic coupling model is thus seen to provide a very useful description of 
this intramolecular dynamics. 
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1. Introduction 

Intramolecular vibrational relaxation (IVR) is an important feature of the 
dynamics of  polyatomic molecular systems; it plays a central role, for example, 
in the description of multiphoton excitation and mode specific chemistry. A 
particularly clear and dramatic example of IVR is manifest in the overtone spectra 
of CH stretch local modes observed in a number of polyatomic molecules. Because 
the phenomenon is so ubiquitous, it has attracted considerable experimental 
[1-5] and theoretical [6-12] attention. 

We have earlier [ 13] shown how a simple semiclassical approach, the semiclassical 
perturbation (SCP) approximation, provides a qualitative description of  the line 
shapes of the CH overtones - and thus the related time decay of the initially 
excited local mode state - and the purpose of  the present paper is to present a 
more detailed analysis and to show that the description is also quantitatively 
useful. The SCP approximation [14, 15], which is essentially a perturbative 
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approximation to "classical S-matrix" theory [16], has been usefully applied to 
a number of phenomena - vibrationally [17] and rotationally [18] inelastic 
scattering, diffraction of atoms and molecules from crystal surfaces [19], phonon 
inelastically in atom/molecule scattering from surfaces [20], curvature corrections 
to reactive tunneling probabilities [13] - and this is another example of this very 
simple and widely applicable dynamical model. 

Our preliminary discussion [13] of overtone line widths was based on the reaction 
path Hamiltonian [21] but in the present work we have utilized the kinetic 
coupling model [11, 22, 23] originally proposed by Gribov [24] to describe the 
polyatomic molecule. In this model internal displacement coordinates, i.e., the 
changes in bond lengths and bond angles, are used. One of the most important 
advantages of using internal displacement coordinates is that in low orders of 
approximation the anharmonic potential coupling terms between the local modes 
and the remaining degrees of freedom of molecule, which are extremely difficult 
to determine, can be neglected, since in the internal coordinate frame the kinetic 
coupling terms resulting from the coordinate dependence of the effective mass 
for the internal coordinate motion provide the dominant coupling responsible 
for the overtone line widths [11, 25]. In contrast with the potential coupling, it 
is a rather trivial matter to calculate the kinetic coupling terms. In the present 
work the SCP approximation plus the kinetic coupling model gives simple, 
analytical expressions for the time correlation function which characterizes the 
relaxation of the local mode overtone states and their related absorption spectrum. 

Section 2 first gives a brief review of the SCP description of local mode overtone 
absorption spectra. The kinetic coupling model that we use is described in Section 
3, and its application to local mode overtone spectra is carried out in Section 4. 
Numerical results for the CH(CD) overtones in benzene (perdeuterobenzene) 
are discussed in Section 5, and Section 6 concludes. 

2. The SCP formula for absorption spectra 

Consider a molecular system of F degrees of freedom, one of which is a large 
amplitude motion coordinate s of special interest and characterized by the 
action-angle variables (n ,  qs). The remaining ( F - 1 )  molecular degrees of free- 
dom are a set of the harmonic modes with frequencies {O~k}, k --- 1 . . . .  , F -  1, and 
characterized by a set of the action-angle variables (n, q). The classical Hamil- 
tonian of the system has the form 

n(ns, q,  n, q) = Ho(n, n)+ Hl(n,  q, n, q) (2.1) 

with 

F - 1  

Ho(n, n) = e~(n~)+ • (nk+�89 (2.2) 
k = l  

The corresponding quantum Hamiltonian operator is given by 

(2.3) 
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where 

F - 1  

/4o=/~s + ~ /~k. (2.4) 
k = l  

Ins) and Ink), k = 1 . . . . .  F -  1, are the eigenstates of/~s and /~k with eigenvalue 
es (ns) and htok (nk + �89 respectively; i.e., 

hs I,,)= ~,(ns)l ns~ (2.5) 
/~k tn~) = htok(nk +�89 k = 1 , . . .  F -  1. 

If the molecule is initially in state ]n~ = 0)In), where In)-= [nl . . . .  , nF-l) (the state 
[n) will usually also be taken to be the ground state [0)), then the absorption 
spectrum I(w) is given by [26] 

I(to) = d t  ei(Eo+~'/"(0, nl~ e-~' /~10,  n), (2.6) 

where 

F - 1  

Eo= ~(n~)+  s ~to~(n~+�89 
k = l  

and 12 is the dipole moment operator of the molecule. As is usual, one assumes 
that/2 is a function only of the s degree of freedom, so that insertion of complete 
sets of states before and after the propagator in Eq. (2.6) gives 

(0, hi/2 e-~a'/h/2[0, n )=  2 (0l/2[n~)(ns, n[ e-~r~'/aln'~, n)(n',[/2[0) (2.7) 
ns,/I' s 

If  one neglects mode mixing--i.e., the term n'~ ~ n, in Eq. (2.7), then the absorption 
spectrum associated with the 0~  n~ overtone of mode s takes the form [13] 

I"~'~ f~-oo dt e-i~~ (2.8a) 

with 

Aw = to - to,~.o (2.8b) 

where to,,.~ is the zeroth-order position of the 0 ~ n~ overtone absorption line 

to,~.o = e~(n~)- e~(0) (2.8c) 

and the correlation function C(t) is 

C( t) = ei~,,.-~/~(n,, n[ e-iH'/hln~, n) (2.9a) 

with 

F - I  

E .... --e~(ns)+ Y. htok(nk+�89 (2.9b) 
k = l  

To this point the description is exact: the overtone line shape, Eq. (2.8), is given 
by the Fourier transform of C(t), and the task is to calculate this correlation 
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function from Eq. (2.9). To do this the SCP approximation is used for the matrix 
elements of the propagator in Eq. (2.9a), whereby the expression for the correla- 
tion function becomes 

C(t) = ~ (2~r)F_ 1 exp [ - iA~( l ) /h ]  (2.10a) 

where the action integral Aqb is given by 

Io AdP(t) = dt'Hl(ns, qs+tost',n,q+tot') (2.10b) 

to = {(Ok}, k = 1,. �9 �9 F -  1, (2.10c) 

and 

~(ns) 
tos = -  - e's(n~). (2.10d) 

Ons  

Eqs. (2.8) and (2.10) provide the working formulae of the SCP description of 
the overtone lineshape. It is thus necessary to express the perturbation H1 in 
terms of the zeroth order action-angle variables and then to average over the 
angle variables as in Eq. (2.10a). IC(t)l 2 has the interpretation as the survival 
probability of the excited zeroth order state Ins, n), and the Fourier transform of 
C(t) gives the absorption lineshape. 

Because the SCP approximation is a type of exponential first-order perturbation 
theory it will be accurate for short times but less so for longer times. The initial 
decay of lC (012 should thus be described correctly, so that the overall line shape 
of the 0-~ ns band will be obtained correctly. Fine structure of the overtone line 
shape, and certainly the limit of individual lines, requires the long time behavior 
of C(t) anal will thus not be described well by the SCP approximation to C(t). 

3. The kinetic coupling model for local mode overtone dynamics 

An essential difference of local mode overtone dynamics from a normal mode 
study is that one has to be concerned with large amplitude motion. Anharmonic 
couplings among the modes must thus be taken into account, at least approxi- 
mately. In Cartesian coordinates the kinetic energy is diagonal and all anharmonic 
couplings are in the potential energy, whose determination requires tremendous 
computational effort. In contrast, in internal coordinates the kinetic energy has 
the form [28] 

F 
T=�89 ~, go(x)p~pj, (3.1) 

i j  = 1 

where x--{x~}, i = 1 , . . . ,  F, are the internal displacement coordinates, i.e., the 
changes in bond lengths and bond angles, p~ are the momenta conjugate to x~ 
and go (x) are the Wilson G matrix elements which, in general, depend on the 
displacement coordinates x and have been tabulated [28]. The g~j(x) can be 
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expanded in a Taylor series expansion in the internal displacement coordinates 
x about the equilibrium geometry x = 0 

F 

gO(x)__ - o go+ ~, (agij/OXk)x=oXk + . . . ,  (3.2) 
k = l  

where gO_ gij(0 ) are determined by the atomic masses and the equilibrium 
geometry of the molecule. Eq. (3.2) gives the kinetic energy to the first order as 

F 

T = T~ 1 ~ ( O g i j / O X k ) x = o X k p i p  j = T~ T1, (3.3) 
~d,k 

where 
F 

TO=ly~ o gijPiPj, (3.4a) 
Id 

and 
F 

T1 = �89 ~ (OgiJaxk)x=oxgpipj. (3.4b) 
id, k 

If the internal coordinate xs corresponds to the local mode of interest, which is 
described as an oscillator with Morse potential 

Vs = D(1 - e-~X,) 2, (3.5) 

then the total potential energy can be expanded as 

V ( x ) = V s " ~ -  ~ (~ f  C i j x i x j '~ -~  Ci ' j ' kX iXjXk"~- ' ' ' )  j,k (3.6) 

where the potential energy at equilibrium geometry has been chosen as zero. The 
classical Hamiltonian to the first order thus reads 

w = Ho + HI,  (3.7a) 

where 

Ho = h~ + h (3.7b) 

with 

hs 1 0 2 -- =~gs~ps• V,, 
h )~ 1 o (3.7c) 

= [Coxixj+~gijpipj], 
i,j # s 

and 

H1 Y Cisx, Xi + E Cijsxixjx~ +1 y~ o = . gisPiP~ 
i~:s ij~s i~s 

+�89 Y. (agU/OXk)~=oXkp, pj. (3.7d) 
L/,k 

In internal coordinates the anharmonic potential couplings (the second term on 
the right side of Eq. (3.7d)) are usually much smaller than the kinetic couplings 
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(the fourth term on the right side of Eq. (3.7d)) [23]. In the kinetic coupling 
model the anharmonic potential couplings are totally neglected, so that Eq. (3.7d) 
becomes 

H,-= Y C,sx,xs +1 E o gisP,Ps +�89 E (Ogij/OXk)x=oXkplpj. (3.7e) 
i # s  i # s  i,j,k 

The coefficients C o in Eq. (3.7c) and Eq. (3.7e) are determined from the molecular 
(harmonic) force constants, so that with this kinetic coupling model the classical 
Hamiltonian is completely determined and relatively simple. 

One now carries out a normal mode analysis [28] for the Hamiltonian h of Eq. 
(3.7c) to find the normal mode coordinates Qk, the corresponding eigenvalues 
to E and eigenvectors Lk with the elements Lik , i = 1 , . . . ,  F - 1 .  The internal 
coordinates are expressed in terms of the normal mode coordinates by 

x, = E L,kQk (3.8) 
k 

and the momenta Pi are given by 

P, = Y. (L -1) ~k Qk (3.9a) 
k 

where the dot denotes time derivative. 
Substituting Eq. (3.8) and Eqs. (3.9) into Eqs. (3.7) gives 

H = Ho+ HI (3.10a) 

with 
F - 1  

~gs, p ~ + D ( 1 - e  ) +~ • (Q2+ 2 2 H o = I  2 - a x  s 2 1 t O l Q l )  ( 3 . 1 0 b )  
1=1 

and 

HI Z C~L~Q~x~+�89 ~ o -1 , = g~(L )ilQtPs 
i # s  L 1=1 1=1 

(Ogu/Oxs)x=o(L )i,(L ) j m O t O m X s  
I ,m=l  i . s 

+ (OgJOxj).=oL~, (L-'),~ Q,Q,.p~ J 

P-' [ x L L -1 * L- '  * " " ] +1 E E (agJa k)~=o kn( )a( )j, mQ, QtQm �9 (3.10c) 
I,m,n=l L i,j ,k~s d 

This Hamiltonian, Eq. (3.10),. is now precisely the form of that in Section 2, so 
that the SCP approach can be readily applied:/4o consists of a Morse oscillator 
for the local mode and a normal mode "bath" for the remaining degrees of 
freedom, and H1 provides the couplings between them. 

It is well known from time-dependent perturbation theory that the importance 
of the terms in H1 depends on the frequency difference between the local mode 
and the bath normal modes. If the frequency of the local mode s is close to the 
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frequencies of  the bath normal modes, then the first two terms in H~ are much 
more important than the last three. For CH stretch local modes, though, it is 
well-known [8, 11, 13] that the most significant coupling is to the corresponding 
CH bend modes, which have a frequency about half that of the stretch modes; 
the third and fourth terms in Eq. (3.10c) describes this interaction. The fifth term 
in Eq. (3.10c) describes coupling between the bath normal modes and will usually 
be neglected in low order approximations. 

4. The SCP-kinetic coupling model for local mode overtones 

To use the SCP formula in Section 2 one carries out a canonical transformation 
from the local mode and normal mode coordinates to action-angle variables 
(n~, qs) and (n, q), 

(n, q) = (nk, qk), k = 1 , . . . ,  F -  1. (4.1) 

In terms of  action-angle variables the normal mode coordinates are given by 

Q k =  ~/ ~o2 sin qk (4.2a) 

Qk = x/(2nk + 1)tOg COS qk, (4.2b) 

and the local mode coordinate and momentum x~ and p, are given in terms of 
(n~, q~) by [27] 

xs = a -l  log {h-211 - (1 -,A2) 1/2 cos q~]} (4.3a) 

and 

i s -  
1 tos (1 - -A2) l /2s inqs  

(4.3b) 
g~s a [ 1 - ( 1 - h 2 ) X / 2 c o s q s ]  

with 

A = 1 - (ns + � 8 9  1/2, (4.3c) 

to, Oes(ns) aa 2~gs , ,  (4.3d) 
Ons 

and 

es (n,)  = - Dh 2 (4.3e) 

where units have been used such that h = 1. I f  the overtone states of interest are 
not too high, then Eq. (4.3) can be approximated as 

1 
x~ -~ - - -  (1 - A 2 )  1/2 cos q~ (4.4a) 

OL 

and 

tO s 
p~ - - - ( 1  - ,t2) 1/2 sin q~. (4.4b) 

gss Ol 
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With Eqs. (4.2)-(4.4) one can now express the perturbation H1 of the kinetic 
coupling model, Eq. (3.10), in terms of the zeroth order action-angle variables. 
The local mode overtone spectrum is thus given by Eqs. (2.8) and (2.10), where 
the action A~(t)  of  Eq. (2.10b) is expressed as the sum of three terms, 

AO(T) = I + H + III,  (4.5) 

where 

I =  d t  - ~, Ci~Lil - - 1=1 ~,~ a ~/ ~ sin (q~ + rod') cos (qs + oJ~t') 

0 -1  f COs( 1 - ~ 2 " j l / 2  �9 + E gi~(L )iz " j x / ( 2 n l + l ) t o t c o s ( q t + t o l t ' ) s i n ( q ~ + t o ~ t ' )  , 
J i # s gss O~ 

which may be approximated by keeping only the term involving the difference 
frequency, 

F--1 

I - E  
I=1 

with 

Wt sin (q~ - qt + 6t), (4.6a) 

and 

Bit = ",/(2nl + 1)tol 
( 1 _  A 2 ) 1 / 2  sin ( ~ - ~ )  t 

2a tos - tol 

[C'~Li'+ g~ r L - " *  to ] 
X Z I - - t ,  ) i t  s l  

ics k tol gss J 
(4.6b) 

tO s - -  tO 1 
~t = 7 r +  t;  

2 

I I  = d t ' � 8 9  E -1 * -1 , (1 - , ~ 2 ) 1 / 2  (Ogo/Ox~)~=o[-(L ) i l (L  )jm 
I,m= l i s Ol 

• + 1)(2nm + 1)tOttOm COS (q~ + tost') COS (qt + tort') 

• COS (qm + tOmt') + (Ogiffdxj)x=oLjt(L-1)*i,, to~ (1 - • 2 ) 1 / 2  
gss ot 

(4.6c) 

~ / ~  (2nl+ 1)(2nm + 1) 
) 

s i n  ( qs + to~t') sin ( qt + tott') cos ( q,. + tOmt') ~ , 

(4.7a) 

which is similarly approximated as 

F - 1  

H -  Z 
I, ra~ l 

Zl,, sin ( q s - ( q , + q , , ) + f l , m ) ,  
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with 

Zt" = ~/(2nt + 1)(2n"  + 1 )oiltom 

and 

III = 

( 1 -A2)  1/2 sin 2 

4 a (Os - -  ( tO l "~l- o im)  

{id#s[--(OgiJ/O s)x=O( )U( )J " X ~, X L -1 * L -1 + 

-1  t tos 

zr tOs - (~ot + t o ' )  

2-~ 2 t; 

IO' F -1  dt  '1 ~ ~ (OgO/OXk)x=O 
l ,m,n=l i , j ,k~s  

t 

(L )it(L )i'1~/ tOn 
• -1 t -1 * (2n t+l ) (2n ,n+l ) (2n .+l )wto i r~  

• sin (qn + tO. t ') cos (q,. + tO., t') cos (qt + tot t') 

which may  be approx imated  as 

sin ( tO" -- tOt + tom \ 
I I I~-  F-I~ Y / ' n {  - ~ t J  

t , ' , n =  l (-On - -  tot -~- tOm 
sin (qn - qt + q"  + Yl) 

+ sin (qn + qt - q"  + 3/2) 
(l.I n ~ OI l - -  0.) m 

s i n (  tOn - tOI - tOm t ) 2  

-t sin ( qn -- qt -- q"  + ')/3) 
ton --  Oil - -  OI" 

with 

=~ E . - ~ . -  .(Oeij/aXk)~=oLk~(L-1)it(L + -l)j'+ Yl'. 
i~ ,k#s  

i 

• X/oitto" (2nt + 1)(2n" + 1)(2n"  + 1) 
u Oin 

OIn -- OIl d- tO" 
Yx-- t, 

2 

(4.7b) 

(4.7c) 

(4.8a) 

(4.8b) 

(4.8c) 

(..OH -[- tol --  Oim 
3/2 = t, 

2 
(4.8d) 
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and 

T3- 
t o n  - -  091 - -  t O m  
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t. (4.8e) 

In many cases Eq. (4.5) can be simplified further. For example, if the local node 
frequency is close to the frequencies of the normal modes, then term ! in Eq. 
(4.5) provides the dominant contribution. So that the correlation function C(t) 
takes the form 

f;rrdqsfo~"rrdqF-I 
= I-I exp [-iWz sin (q,--ql+~l)].  (4.9) c(t) ~ (2~) ,~_ ,  , = ,  

Introducing a new variable 

0t  = q s  - qt 

and using the identity 

I] 1 = - -  e ikl(Ol-qs+ql) 
2 7r kt=-co 

one can perform the integrals in Eq. (4.9) and obtain a very simple, analytic 
expression for C(t) 

fo~"dqs lo" '~dq  ~-1 cu)= n e 
kt=-oo 

fo :~ dOi iklO t e_iWlsin(Ol+8t ) 
x 2--~e 

e-ik' q, e-ik,q, e-ikp,Jk,(Wt) 
kt = - c o  

o"  dqs fo ''~ dq F-1 

F - - 1  

= 1-I & ( w , )  
I=1 

where the relation 

fo '~ dq einq 

(4.10) 

has been used. Similarly if the local mode frequency is about twice those of the 
normal modes, then term H in Eq. (4.5) is dominant, so that 

fo" '~dq~fo:~dq F-~ 1-I exp {--iZ~m sin [qs(q,+q,,,)+8,m]} C(t)= -~ ( 2 1 7 " )  F - 1  t , m = l  

F - - 1  

= I1 Jo(Z,,,,) 
I,m=l 

where the same trick as that above has been used. 

(4.11) 
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5. Sample calculation: the CH(CD) stretch local mode overtone spectra of 
benzene (perdeuterobenzene) 

To demonstrate the use of the SCP kinetic coupling model the CH(CD) stretch 
local mode overtone spectra of benzene (perdeuterobenzene) have been studied. 
Benzene is one of the most highly studied molecules. The normal mode funda- 
mental frequencies and the force constants are available in literature [10, 28, 30]. 
In benzene, as in most hydrocarbons, the hydrogen atoms vibrate along the 
direction of the CH bonds without much other motion in the molecule. So to a 
good approximation the hydrogen vibrational motions along the CH bonds can 
be treated as local modes. In addition, since the six CH bonds do not have a 
common atom, the kinetic couplings between the six CH stretch local mode 
motions are to first order zero, and it is also reasonable that the quadratic 
off-diagonal terms between the six CH stretch motions in the potential energy in 
terms of internal coordinates are negligible. Thus to a good approximation the 
six stretch local modes can be treated as the six uncoupled anharmonic Morse 
oscillators with Morse potential V(xs)= D[1-exp(axs)] 2, where D is the CH 
bond dissociation energy and a is the scaling parameter. Furthermore, the benzene 
molecule has the D6h symmetry and the six CH bonds are equivalent. Thus, the 
problem can be further simplified to considering only a single CH oscillator 
interacting with the ring modes. 

The Hamiltonian for the problem of the CH local mode overtone thus reads 

H= Ho+ H1, (5.1a) 

with 

15 

Ho=lgcnp~H+D[1 -exp  (--CeXcH)]2+ 1 • (Q2+to2Q 2) 
k = l  

and 

1 1 1 
gCH ~H + /zc '  /ZH =--'mH/xc =--me (5. lb) 

where only the fifteen in-plane normal ring modes are included because there 
are no coupling between the CH stretch local mode and the out-plane normal 
modes. Also, since the CH stretch frequency (-3000 cm -1) is much larger than 
any of the other in-plane frequencies (-600-1600 cm-1), the action Aqb of Eq. 
(4.5) is well-approximated by term H alone. The in-plane internal coordinates 
which are kinetically coupled to the CH stretch Xci4 are: the extension of the CC 
stretch coordinates x~,x6 and the in-plane CCH wag Xw=XcHo/3= 
X c l - l o [ ( ~  6 - -  ~bl)/2], where ~D 1 and ~b6 are the CCH bond angles and X C H  0 is the 
equilibrium length of the CH bond (see Fig. 1). By using the general formulae 
for the Wilson G-matrix elements in Table VI-1 of reference [28], the kinetic 
coupling H1 reads (for the details, see the Appendix) 

H i  ~ 2 Al XcHPw + A2xcH( p6-- pl)pw + A3xw( P6- pl)pcr~ (5.2a) 
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\ 

% 4,, 

~6 (" 11 

Fig. 1. Numbering of in-plane coordinates 
which are kinetically coupled with stretch 
xcH: s = XCH + Xcn o is CH bond length: q = 
x I + X o and t 6 = x 5 + X o are CC bond lengths; 
/3 = (Oh 6-  q~1)/2, where ~b 6 and q51 are CCH 
bond angles; cz are CCC bond angles; Xcn o 
and Xo are equilibrium bond lengths of CH 
bond and CC bond, respectively 

with 

A,=-( ]s "F II~C + ]s ~ (5.2b) 
\XcHo Xcno 2Xo/ 

A2 =-x/-3/(4XCHo) " /~c (5.2C) 

A3 = x/~/(4XcHo) " /-*c (5.2d) 

where Pw, Pl and P6 are the momenta  conjugate  to xw, Xl and x6, respectively, 
and Xo is the equil ibrium b o n d  length o f  CC bond.  

With the interaction Hamil tonian  H1 given by Eqs. (5.2) the SCP correlat ion 
funct ion takes the form given by Eq. (4.11) 

15 
C ( t ) =  l-I Jo(Z~,,) (5.3a) 

l ,m=l  

with 

+A2(L )wm[(L )6/ (L-1)~,] = A l ( L  )~,(L )win Z l  m - 1  t --1 t -1  "~ - 1  t 

+ A 3  1 0 J c H .  L~m[(L_~),6~_(L_,)~] 
gCH COrn 

x ~'(2 n~ + 1)(2n., + 1) wto~,,, 

WcH=O~ 2"4~gCH" A 

and 

/~ = 1 --  (F/CH'-[- 1 ) / % / ~ - g C H  

�9 / O)CH --  (,O l --  (.Ore t ~  
(1 - A 2)1/2 sin k ) 

2a  O)CH - -  ((-OI -~- O)m) 

(5.3b) 

where the Morse potential  parameters D =  0.0199 (0.218)a.u. and a =0.9386 
(0.898) a.u. for  benzene (perdeuterobenzene C6D6) are determined such that the 
energy eigenvalues for the C H ( C D )  stretch Morse oscillator h c H ( n c . ) = - D ) t  2 

(5.3c) 
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Table 1. Energy spacings between successive CH and CD 
overtones in C6H 6 and C6D 6 respectively 

13 

Av._~,. (cm -~) 
n C H  ~ CD b 

1 3043 2294 
2 2929 2209 

a Calculated by using the formula for the observed spacing in 3 2814 2153 
the CH stretch overtone spectrum [1]. 4 2700 2097 

5 2586 2040 
v(cm-1)=3157.1 (n+�89 (n+�89 2 6 2472 1984 

b Calculated by using the fomula for the observed spacing in 7 2358 1928 
the CD stretch overtone spectrum [1]. 8 2245 1871 

9 2129 1815 
v(cm -1) = 2322.3 (n +�89 - 28.2(n +�89 

Table 2. The ring normal modes of C6H 6 and C6D 6 and the coefficients in Eqs. (5.3) a 

i 

s y m m e t r y  u(cm -1) - 1  ~f b --1 t - 1  J- b c ( L ) . ,  [(L ) ~ - ( L  ) . ]  Lw, 

C6H6 C6D 6 CH CD CH CD CH CD 
Alg 993 945 0.0000 0 . 0 0 0 0  0 , 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0.0000 
A2g 1350 1059 0.3644 0 . 4 6 8 5  0 . 0 0 0 0  0 . 0 0 0 0  0 . 4 5 7 4  0.3557 
E2g 606 579 0.0874 0.2314 1.7068 1.4389 0 . 0 7 8 4  0.1041 
E2g b, 1599 1557 -0.1828 0 . 1 1 5 7  -1.609 1.8256 -0.3894 0.2687 
E2g b 1178 869 -0.5430 0 . 7 7 7 3  -1.621 -1.825 -0.4699 0.3565 
BI~ 1010 970 0.0000 0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0 . 0 0 0 0  0.0000 
B2, 1309 1282 0.1656 0.0637 1.2968 1.549 0.2738 0.1488 
B2. 1146 824 0.3740 -0.5759 -1.100 0.8446 0 . 3 2 2 9  -0.2730 
Elu b 1037 814 -0.4140 -0.7258 0.8338 0.8023 -0.2533 -0.289 
Elu b 1482 1333 0.3892 0 . 3 0 9 8  0 . 3 5 8 8  0 . 5 7 4 6  0 . 5 8 6 5  0.3949 

a Results taken from Reference [11] 
b In square root of atomic weight mass unit 
c In (I/square root of atomic weight mass) unit 

Fig. 2. The experimental absorp- 
tion spectra of C6H 6 (C6D6) of 
reference [1]. Each panel con- 
tains: spectral assignments where 
n indicates the number of quanta 
of CH (CD) stretch excitation, 
positions of band maxima or 
hand centers (v o values in the 
upper right-hand corners Of the 
panels, in cm-1), and FWHM 
bandwidths in cm -1. Ordinates 
are absorption cross sections (G 
values, in Millibarns (mb = 
10-27cm 2) and abscissae are 
spectral shifts relative to the band 
maxima 

C6H 6 

5 F 91/CH 

201- /X 8Vc" 

o, - - , - - -  - - 7 2 - _  
86 f X  cH 

~ [8904 
0 ~ ~ -"---4--.-- 

400 / ~  6VcH "~ 

21oo /"x 5~'cH J 

 o-aoo %  o+2OO 

C6D 6 

20 I ~ I 
7~C0 

I10[ 

400 5~C D 

 -,oo % g+Joo 
~" (cm -I ) 
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n=6 

0 ,1 "~.t 1 1 I I I 1 

1.0 

n=7 

t 

O ~ J  i 1 1 1 I I 

n=8 

k 1 I l I 1 I 1.0 

0 %  n:9 

0 0./. 0.8 1.2 1.6 
t (ps)  

Fig. 3. The square of absolute value of the correlation 
function I c ( t ) l  2 for CH stretch local mode overtones 
n = 5-9 in C6H 6 as a function of time. The dashed line 
corresponds to C(t) defined by Eqs. (5.4) 

fit the experimental CH(CD) overtone spacing listed in Table 1, the transformation 
matrix elements (L-1)~t, [(L-116*,-(L-I)~] , and Lw,,, l, m = 1 , . . . ,  10 are given 
in Table 2, and the fact that only ten modes have different frequencies (five modes 
are doubly degenerated) has been used. The overtone spectrum of the CH(CD) 
stretch local mode I,~.,o(to) can then be determined by Fourier transform of the 
correlation function C(t), i.e., Eq. (2.8). Since Z , . ( t )~  sin [ ( t o c u - t o -  tom)t~2] 
is an odd function of time t, Jo(Z,,) is an even function of Zl,. and the spectra 
thus symmetric. 
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Fig. 4. The logarithm of IC(t)] 2 as a function of time for 
CH stretch local mode overtones n = 5 - 6  in C6H 6. The 
dashed line corresponds to t~(t) defined by Eqs. (5.4) 
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C6H6 
0 

n = 5  

- 8  

-16 

0 1 I I I I 1"" I I 

-16 

( l l l l l l l  

16 " " -  

0 L  1 I I I I ' '  I 1 

-16 
0 I I 1 1 1 1 1  

-16 
I I 1 1 1 1 1 1  

o o.~ 0.8 1,2 ~.6 
t (ps ]  

The results for the CH stretch local mode overtones, n = 5 - 9 ,  in benzene C 6 H  6 

are shown as the solid line curves in Fig. 3-5. For comparison the experimental 
results [1] are presented in Fig. 2. In Fig. 3 the square of  absolute value of the 
correlation function I C(t)l  2 plotted as a function of  t. The log [C (t)l 2 as a function 
of t is plotted in Fig. 4. The calculated absorption spectra of  benzene are given 
in Fig. 5. 

In Fig. 3 it is seen that [C(t)l 2 decays monotonically to (essentially) zero in a 
fraction of  a picosecond; Fig. 4 shows that this decay is not strictly exponential,  
though this is of  no great consequence. One also sees that except for n --- 6, there 
are no significant recurrences (i.e., where [C( t ) l  2 rises above - 1 0  -2 for times up 
to - 2  picoseconds. Thus the overtone absorption spectra are broad and feature- 
less, in agreement with the experimental results in Fig. 2. In order to demonstrate 
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Fig. 5. The absorption spectra I(A~)/I(;) for CH 
stretch local mode overtones n = 5 - 9  in C6H 6. The 
dashed line corresponds to C( t )  defined by Eqs. (5.4) 
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Fig, 6, The square o f  absolute value o f  the correlation 
function IC(t)l 2 for the C D  stretch local mode over- 
tones n = 5 - 9 in C6 D~ as a function of  time 
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Fig. 7. The logarithm of Ic(t)P as a function of l ime 
for CD stretch local mode overtone n = 5 - 7  in CsD ~ 
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Fig, 8. The absorption spectra l(A~)/l(~o) for CD 
stretch local mode overtones n = 5 - 6  in C6D 6 

this even more  clearly, in Fig. 3-5 we have also plot ted the curves (dashed line) 
for  [C(t)[ 2, log [C(t)[ 2 and the corresponding spectra I(Aw)/I(w~ where C'(t) 
is defined by 

C(t) = C(t) f o r 0 ~  < t ~  tv and (~(t) = e x p  ( - t / t v )  for  t >  tF (5.4a) 

with 

tv = - tF/ log [ C (tF)]. (5.4b) 

Here the t ime tv indicated in Fig. 3-5 is the time at which the I c ( t ) l  2 has decayed 
to about  0.01 (except for  n = 6, for which tv is about  the end time of  the initial 
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Table 3. Linewidth of (CD) stretch overtone of benzene(perdeuteroben- 
zene C6D6) 

FWHM(cm -~) 
ncn CH CD 

Exp. ~ SCPKC b Exp. a SCPKC b 

5 111 82 50 
6 95 23-60 37 >7 
7 90 60 =35> >8 
8 100 56 65 >6 
9 56 32 

a Reference [1] 
b Present work--SCP kinetic coupling model 
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rapid decay). In Fig. 5 it is seen that except for n = 6, the dashed line very closely 
follows the solid line. Thus the initial rapid decay of  Ic ( t ) l  2 determines the main 
features of  the absorption spectrum so long as IC( t ) l  2 is small ( -  < 0.01) for later 
time. For n = 6  CH stretch overtone there are strong recurrences, and as a 
consequence the absorption spectrum has some structure. The dashed line is 
different from the solid one, the former being the envelope of the latter. 

Similar results for C6D 6 are shown in Fig. 6-8. Fig. 6 and Fig. 7 show that for 
the CD stretch IC(t)l  2 decays approximately exponentially for short times (except 
for n = 5, which decays very little at all), though more slowly than for C6H 6 and 
also with more significant recurrences. The spectra in Fig. 8 thus all show an 
extremely narrow peak. 

The linewidths of  the C H(C D)  overtones of  C6H6(C6D6) taken from calculated 
spectra are listed in Table 3 where the experimental results are also included. 
The agreement is reasonable, realizing that the experimental results include 
rotational structure and also possible thermal inhomogeneities. It is particularly 
gratifying that our model reproduces the narrowing of  the overtone line width 
for the highest overtones. This has been discussed before [11, 13] as being due 
to the overtone frequency (i.e., level spacing) becoming out of  resonance with 
two quanta of  the CH bend mode as n becomes ~ 6 - 7 .  

6. Concluding remarks 

The present results show that the semiclassical perturbation model is capable of  
providing the correct description of  short time dynamics in polyatomic molecules. 
They also provide additional evidence that the kinetic coupling model is the 
principal source of coupling of CH stretch vibrations to other modes in the 
molecule. 

Agreement with the experimental line shapes of  the CH stretch overtones in C6H6 
is reasonably good. The calculated absorption lines for the CoD6 case are substan- 
tially narrower than the observed spectra, but since the experimental line widths 
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for C 6 D  6 a re  much smaller ( -ha l f )  than those for C6H 6 it is quite likely that the 
observed widths for C 6 D  6 a re  largely due to unresolved rotational structure. 

It is encouraging that so simple a dynamical model as SCP is capable of  providing 
a semi-quantitative description of the microscopic dynamics in a polyatomic 
molecule. One expects that it should be useful in other situations where it is the 
short time dynamics which determines the phenomena of interest. 

Acknowledgement. This work has been supported by the National Science Foundation Grant 
CHE-79-20181. 

Appendix: The first derivatives of Wilson G matrix elements 

For the internal coordinates of benzene defined in Fig. 1 the relevant Wilson 
G-matrix elements can be determined from Table VI-1 of reference [28] 

2 ~H 1 3 gw = g/3/3XcH : X2Ho "{" q- ] /Zc, (A.1) 
(XCHo+XCH) 2 (XCHo+XCH)Xo 4Xo 

X .o. 
g,m = 2 (,g4,,,,- g,~6t6) . . . .  (A.2) 

XCH o 
gw,, = 2 (g4,,,,- g4,6,,) =" 

g,6s =/Zc cos (~b - /3 )  

gt, s = tZc cos (th +/3) 

2 (XcHo+ XCH) Xo 

 oX .o ,5 
2 (XcHo+ XcH) Xo 

(n.3) 

(A.4) 

(A.5) 

(A.6) 

Ogwt61 xf3/zr (A.9) 
OXcH x=O----- 2XCHo 

Ogw,~ [ 4c3 I.~c (A.10) 
I 8Xcn ~=o 2 XcHo 

ag~,s[ ~ IXc (A.11) 
I OXw x=o 2 XcHo 

/~e 2 3 
gs~ = Xo x/~ [~ cos (6  +/3) +3 cos (6 - fl)] 

with 

1 1 
/~c = - - ,  /ZH -- (A.7) 

mc mH 

where mc and rnH are the masses of atom C and atom H. Then the relevant 
derivatives are 

0g., = 0 = _ [ 2 f t H + 2 / Z C  + . e l  (A.8) 
OXcn kXcno XcHo XoJ 
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Og,, = ~/3 /Zc (A.12) 
Ox~, x=o 2 XCH0 

Og,,, = 0 .  (A.13) 
OXw x=O 
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